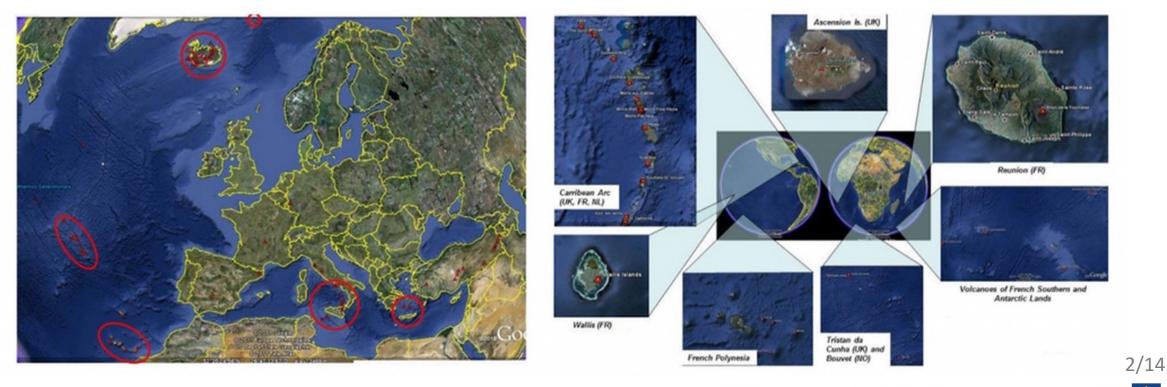


Volcanolo Observations Thematic Core Service – VO-TCS

Kristín S. Vogfjörd¹⁾, Giuseppe Puglisi²⁾, Adelina Geyer Traver³⁾, Philippe Labazuy⁴⁾, Jean-Chr. Komorowski⁵⁾, Danilo Reitano²⁾, Letizia Spampinato²⁾, Arnaud Lemarchand⁵⁾, Yannick Guehenneux⁴⁾, Sara Barsotti¹⁾, Jean-Marie Saurel⁵⁾, Davíð S. Guðjónsson¹⁾, Lucia Cacciola²⁾, Rosella Nave²⁾, Hrafnhildur Valdimarsdóttir¹⁾, Georges Vougioukalakis⁶⁾, Patrick Bachelery⁴⁾, Benedikt G. Ófeigsson¹⁾, Tim Sonnemann¹⁾, Fjalar Sigurðsson¹⁾

1) IMO, Iceland; 2) INGV, Italy; 3) CSIC, Spain; 4) OPGC, France; 5) IPGP, France; 6) HSGME, Greece

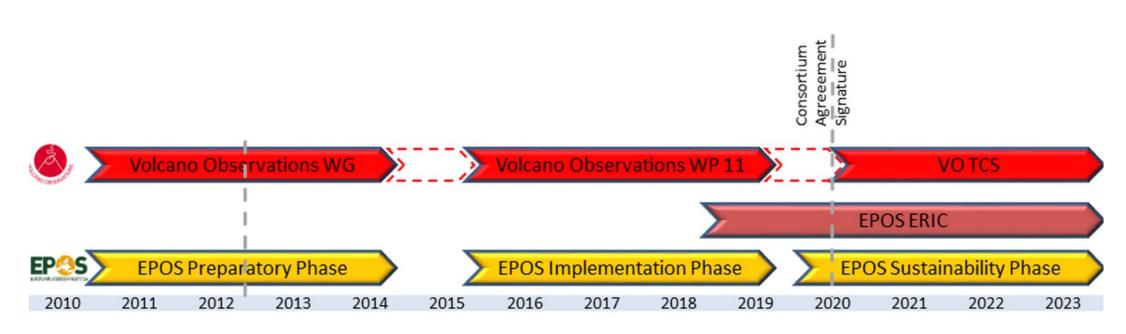


VOLCANO OBSERVATIONS

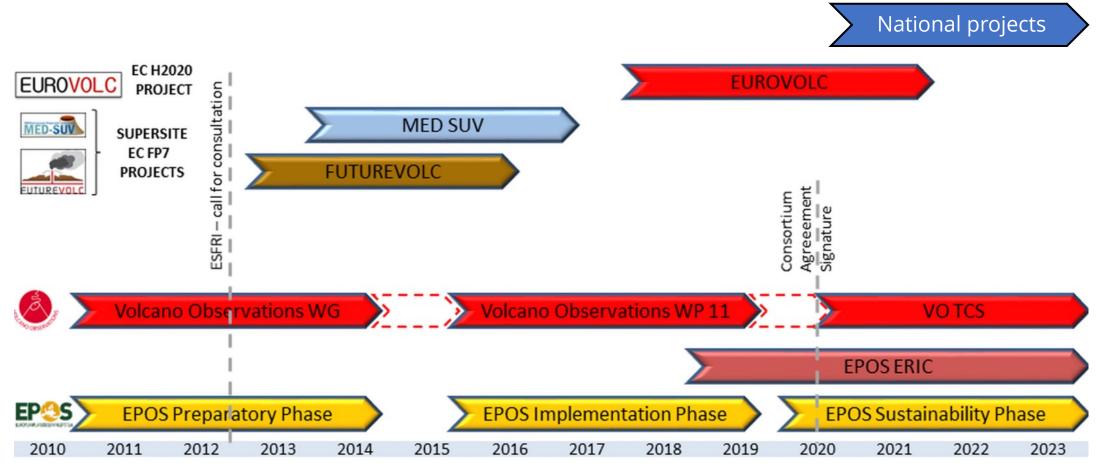
1. Objectives of the volcanological community

- To share data, products and best practices in monitoring and research methods to promote the application of the Open Science paradigm in volcanology
- To facilitate access to volcano observatories, laboratories and computational facilities in order to strengthen the European volcanology community

1. Mission of the VO-TCS


The **overall mission of** the **VO-TCS** is to:

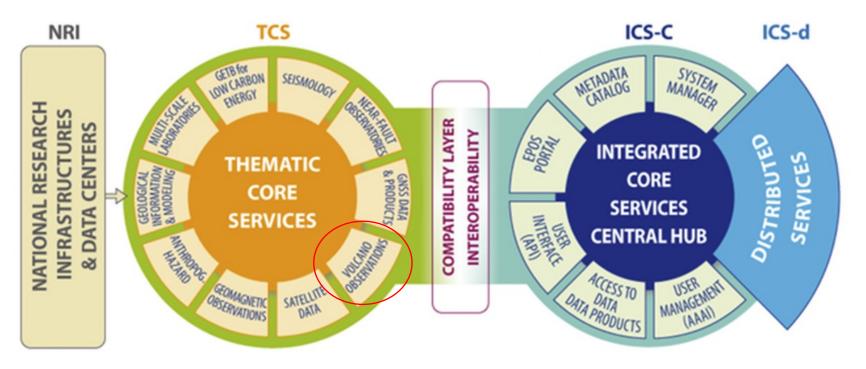
- provide coordination between the European Volcano Observatories (VO) and Volcano Research Institutions (VRI)
- implement interoperable services
- provide long-term sustainable access to Volcanological <u>Data</u>, <u>Products</u> and <u>Services</u> related to volcanic areas monitored and/or studied by the European VOs and VRIs
- promote **standardization** and **good practices** through EPOS


The EPOS SP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 871121 📑

2. Timeline of activities

Participation in the EPOS build-up provided additional opportunities to further design and implement the European volcanological infrastructure

2. Timeline of activities

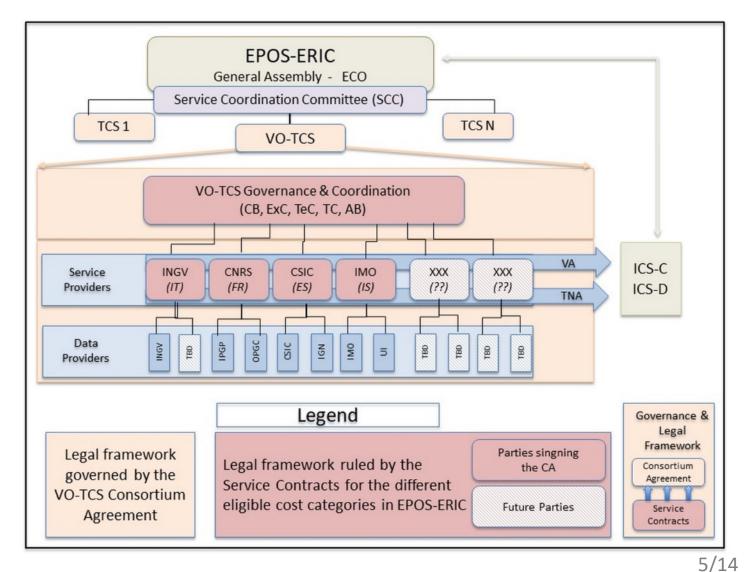

Participation in the EPOS build-up provided additional opportunities to further design and implement the European volcanological infrastructure

3. Structure and functional architecture of EPOS: TCS and ICS

The EPOS architecture is composed of three connected technical and structural elements:

- National Research Infrastructures (NRI)
- 2. Thematic Core Services (**TCS**)
- 3. Integrated Core Services (ICS)

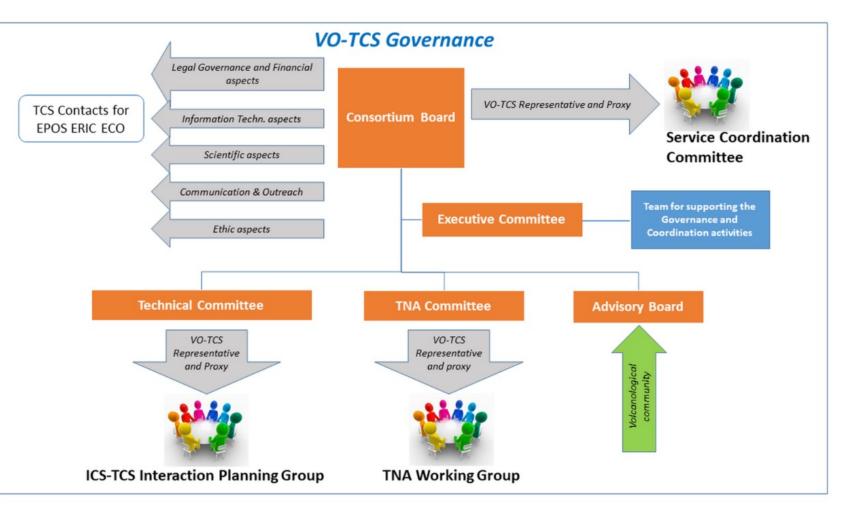
Volcano Observations Thematic Core Service = VO-TCS



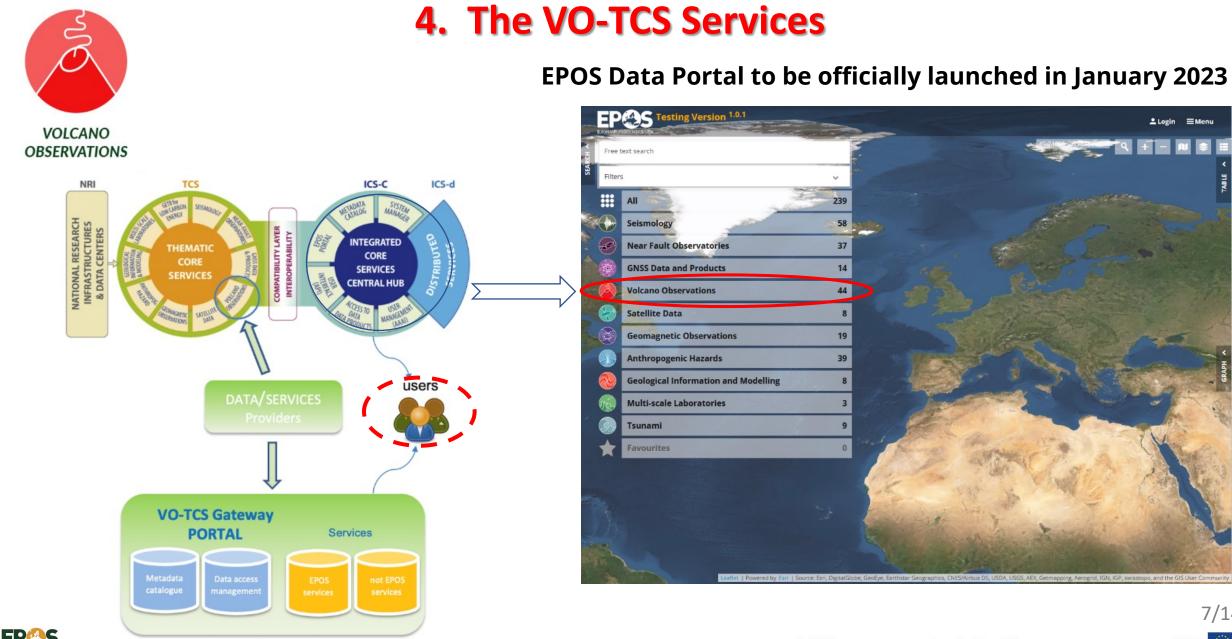
3. Structure and Governance of the VO-TCS

General architecture of the VO-TCS (pink box)

- The *top* level refers to management, or Governance
- The *middle* level refers to the **technical** management of the services (Virtual Access and Trans-National Access services) - all managed by the Service Providers
- The *lowest* level refers to the **sources of** the • data and products (VO-DDSS) available from the **Data providers** and **coordinated by** National Consortia or institute



A CONTRACTOR OF THE OWNER OF THE


3. Structure and Governance of the VO-TCS

- Consortium board (CB): <u>Decision-making</u> body
- Executive Committee (ExC): <u>Supervisory</u> body for execution and implementation of TCS activities and CB decisions
- Technical Committee (TeC): provides technical <u>support</u> and cooperates with ICS
- Transnational access Committee (TC): <u>management</u> of TNA activities
- **Advisory Board** (AB): <u>supports</u> the community building; is composed of representatives of the stakeholder community

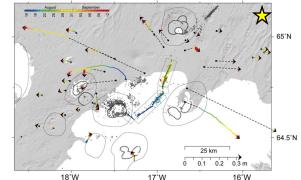
Sectore Provident Contraction

7/14

MANAGER AND A COMPANY AND A REAL AND A

Login ≡Menu

THE EPOS SP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 871121


- > Access to volcanological facilities:
 - Virtual i.e., through informatics networks
 - **Physical** (or **Remote**), i.e. through the use of on-site observatories, laboratories, etc.
- To guarantee the sustainability the services they <u>must</u> follow the FAIR principle and 4 main aspects must also be validated :
 - 1. <u>Technical</u>, i.e., standardization and harmonization of data and metadata, interoperability with ICS, continuity of the provisions
 - 2. <u>Governance</u>, i.e., clear definition of roles and responsibilities in the service management, both at national and European level
 - 3. <u>Legal</u>, i.e., compliance with Open Access policies
 - 4. <u>Financial</u>, i.e., adoption of the EPOS funding model and a suitable strategy for future funding provisions
- The main issue of the implementation of the infrastructure concerns the management of the intrinsic heterogeneity of the volcanological services
 8/14

Seismological and Geodetic Data

VOLCANO OBSERVATIONS

...ongoing work, first implementations

[Bárdarbunga 2014; Sigmundsson et al., Nature 2015]

DDSS Name	CSIC	ІМО	INGV	IPGP	OPGC	HSGME
Velocity seismic waveforms		Eastern, Northern and Western volcanic zones	Etna, Stromboli, Vulcano, Campi Flegrei, Vesuvio	Mayotte, Montagne Pelée, Piton de la Fournaise, Soufrière de Guadeloupe,		Santorini
Acceleration /Accelerometer waveforms			Etna, Stromboli, Vulcano, Campi Flegrei, Vesuvio	Montagne Pelée, Soufrière de Guadeloupe,		
GNSS raw data (Rinex Data- 15s)		Eastern, Northern and Western volcanic zones	Etna, Stromboli, Vulcano, Campi Flegrei, Vesuvio	Mayotte, Montagne Pelée, Piton de la Fournaise, Soufrière de Guadeloupe,		
Tiltmeter				Mayotte, Montagne Pelée, Piton de la Fournaise, Soufrière de Guadeloupe,		
Tide gauge				Soufrière de Guadeloupe		
Station information		Eastern, Northern and Western volcanic zones				9

VOLCANO

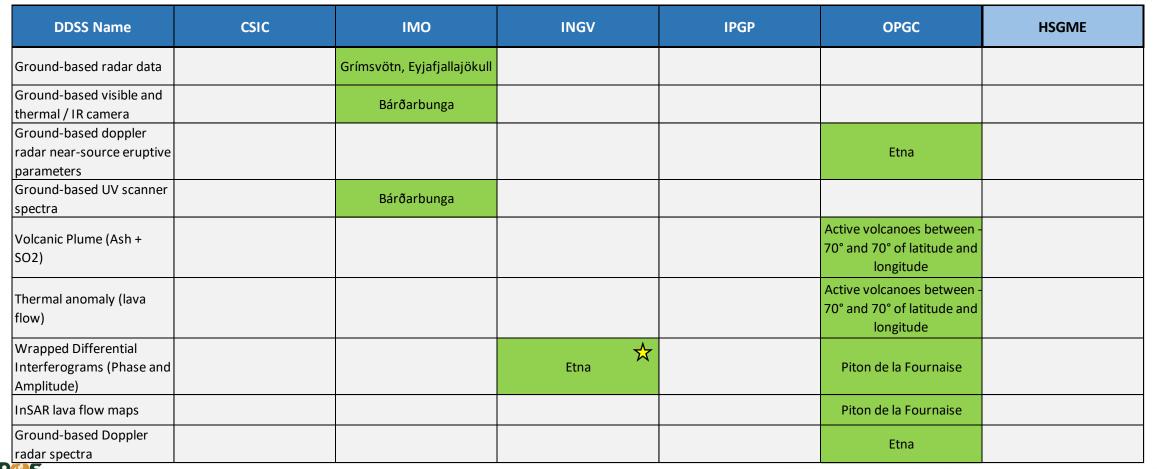
OBSERVATIONS

Petrological, geochemical and volcanological

data and products ... ongoing work, first implementations

DDSS Name	CSIC	IMO	INGV	IPGP	OPGC	HSGME
Collections of magmatic rocks					Piton de la Fournaise	
Reports on volcanic activity		All volcanoes in Iceland	Etna	Mayotte, Montagne Pelée, Piton de la Fournaise, Soufrière de Guadeloupe,		
Aviation colour codes for volcanoes		All volcanoes in Iceland	Etna	Mayotte, Montagne Pelée, Piton de la Fournaise, Soufrière de Guadeloupe,		
Catalogue of eruptions		Bárðarbunga, Eyjafjallajökull, Grímsvötn, Hekla, Katla				
Chemical analysis and physical properties of gas, water and rocks			Etna		Piton de la Fournaise	

EPOS SP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 871121 📑



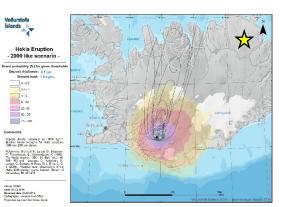
VOLCANO

OBSERVATIONS

Ground-based and Satellite Remote Sensing

data and products ... ongoing work, first implementation.

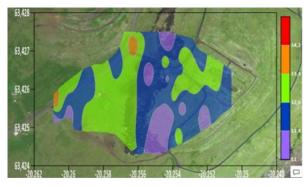
THE EPOS SP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 871121


dvanced search filters (2 of 2)

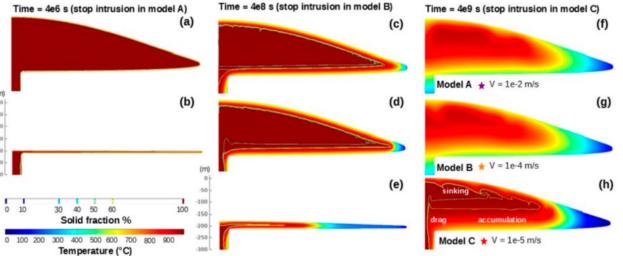
Page 5 of 5 | < <

Geohazard and Modeling products and services

...ongoing work, first implementations


DDSS Name	CSIC	ІМО	INGV	IPGP	OPGC	HSGME
SO2 concentration probabilistic hazard maps		Bárðarbunga				
Spatial probability analysis/maps	San Miguel, Lanzarote Island, El Hierro island, Deception Island, La Garrotxa Volcanic Field					
Lava flow invasion hazard maps	Lanzarote island, El Hierro island, Deception Island, La Garrotxa Volcanic Field					
Tephra fallout hazard maps for explosive	Lanzarote island	Hekla, Katla				
PDCs hazard maps	El Hierro, Deception Island, La Garrotxa Volcanic Field					
Probabilistic volcanic hazard assessment (maps)	Lanzarote island, El Hierro island, Deception Island, La Garrotxa Volcanic Field					
Effects on health and recommendations for response to SO2 from volcanic eruptions		All volcanoes in Iceland				
Daily ash/gas forecasting		Dependent on the daily				
maps Software catalogue for petrological to geophysical modelling		runs	V			

Physical or Remote access to the volcanological facilities:


- Observatories
- Laboratories
- Pool of instruments
- Computational facilities

5. Concluding Remarks

- The **establishment of the VO-TCS in 2020** is the result of a long history, which started in 2010 within the EPOS pan-European infrastructure for Solid Earth Science
- The overall aim of the VO-TCS is to foster adoption of the Open Science paradigm in volcanology and facilitate access to volcano observatories, laboratories and computational facilities in order to strengthen the European volcanology community
- The first 44 services will be operational at the end of 2022 and many more will be implemented in the coming years
- The VO-TCS wishes to cooperate with other international initiatives (e.g. WoVodat) to create a global infrastructure for providing data, products and services to the volcanological community

Reference: G. Puglisi et al., 2022. The integrated multidisciplinary European volcano infrastructure: from conception to implementation, *Annals of Geophysics* (in press)