

Candidate TCS TSUNAMI

A. Babeyko and cTCS Core-Team

Our geography

Currently 30 partner institutions across Europe from 14 countries

- Started preparations for EPOS TCS since 2018; long track of networking activity and dedicated meetings in preparation
- Formal endorsement received by the Intergovernmental Coordination Group of the NEAMTWS, formed by the representative of the IOC/UNESCO Member States in the NEAM Region
- Received **12 Lols** for the constitution of the Tsunami TCS
- Involvement of about **30 partners** in the previous project proposal aimed at the constitution of the TCS
- 22 July 2021: EPOS Candidate Thematic Core Service (TCS) granted for the Tsunami Community
- April 2022: Community White Paper published in the EPOS Special Issue of Annals of Geophysics (<u>https://doi.org/10.4401/ag-8762</u>)

Our coverage

THE EPOS SP PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT N° 871121

Our organization

TSP Interoperability Tool

Tsunami Warning and Mitigation Systems to Protect Coastal Communities: Tsunami Early Warning and Mitigation System in the North-Eastern Atlantic, the Mediterranean and Connected Seas (NEAMTWS) 2005–2020; Factsheet 2020.

https://unesdoc.unesco.org/ark:/482 23/pf0000373791.locale=en

Earthquake Source Zone Monitored by the NEAMTWS-TSPs

The map below shows the Area of Responsibility (AoR) of Tsunami Service Providers (TSPs) operating within the ICG/NEAMTWS.

Currently 5 NEAM Tsunami Service Providers:

- Portugal
- France
- Italy
- Greece
- Turkey

TSP-Interoperability tool to exchange warning and situation assessment information (in production)

disclaimer | contact

Catalog

[next station

http://www.ioc-sealevelmonitoring.org

ACTIVITY AND A LOW THE DAY

Databases

Euro-Mediterranean Submarine landSlide database (EMSS21)

Access to Labs

HR Wallingford's Froud Modelling Hall (Fast Flow Facility)

Numerical codes to simulate tsunami

Source codes and (HPC-)workflows to simulate:

- complex sources of tsunami generation
- wave propagation
- coastal shoaling and inundation

Hazard products

European NEAMTHM18 probabilistic hazard model

Basili et al. 2021

cTCS TSUNAMI

Our services Risk products

Empirical fragility curves based on observed damage

Fragility curves for *Non engineered masonry, unreinforced with clay brick, 1 storey,* Sulawesi Palu Tsunami 2018 (No. of data points: 279) Fragility curves for *Non engineered light timber*, Sulawesi Palu Tsunami 2018 (No. of data points: 14, the uncertainty band is thus larger)

Relevance to African urban context: Similar non-engineered building types could also be found in Africa. Sub-Saharan Africa has the highest proportion of urban population living in informal settlements (quality/durability of structure is one of the four informal housing criteria): 56% in 2018 according to the United Nations Human Settlements Programme (UN-Habitat).

Damage Level		Damage level description
D ₀	None	no damage
D ₁	Repairable	Partial damage, repairable
D ₂	Unrepairable	Partial damage, unrepairable
D ₃	Complete	Complete structural collapse
		Damage Scale and raw damage data: Paulik et al. 2019

The workflow is available as software: eurotsunamirisk/computeFrag: https://doi.org/10.5281/zenodo.5167276

Our Community web-site

https://tsunamidata.org

Our relevance to other TCS

- Strong inter-disciplinarity: natural interaction with other TCSs
- Strong international (beyond Europe) network
- Rich portfolio of stakeholders: research, private sector, civil protection, early warning, policy makers
- State of the art numerical modeling and observing systems

Great 2004 Sumatra Earthquake and Tsunami

Image from wikipedia.org

European NEAMTHM18 probabilistic hazard model

http://tsumaps-neam.eu

Okal and Hartnady (2009): The South Sandwich Islands Earthquake of 27 June 1929: Seismological Study and Inference on Tsunami Risk for the South Atlantic. (doi:10.2113/gssajg.112.3-4.359)

The EPOS SP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 871121 📑

The search and the same when

Meteo-tsunamis

Okal et al. (2014): The Dwarskersbos, South Africa local tsunami of August 27, 1969: field survey and simulation as a meteorological event. (doi:10.1007/s11069-014-1205-5)

Thank you!

THE EPOS SP PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT N° 871121